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Abstract

Breadth-first ray tracing that utilizes uniform spatial subdivision can render
a large number of objects without breakdown. The original algorithm however
has two major drawbacks: redundant data processing and limited grid resolution.
We present several refinements for these drawbacks and realize fast and robust
external ray tracing. We achieved speedups of roughly up to 4x for SPD scenes
with up to 50 million objects, and up to 14x for pathological cases with 1 billion
objects, all rendered on a PC with 256MB memory.

1 Introduction

Ray tracing is known to be a powerful, versatile rendering technique. Unfortunately,
the ordinal algorithms are designed for in-memory scene databases, and does not
work well for large data. This is a challenging problem that was pointed out by
Cook, et al. in their historic paper about REYES.

Recently, Pharr, et al. [Pharr97] and we [Nakam97] are concentrating on this
topic on standard workstations. Pharr introduced a cache-based algorithm, while
we introduced a stream-based algorithm – in other words, Pharr directly enhanced
traditional, retained mode ray tracing with a sophisticated cache mechanism, while
we constructed immediate mode ray tracing by switching the roles of rays and scene
data. Pharr’s algorithm stores both scene data and rays on disk, while minimizing the
amount of reading.1 This approach is similar to those of many algorithms developed
for parallel computers. Our algorithm, on the other hand, keeps rays in memory and
reads scene data sequentially. The access to scene data is minimized by processing
rays in breadth-first order, thus maximizing the amount of rays processed at a time.
Müller, et al. originally developed thisbreadth-first ray tracingfor a large number
of objects and their approach for accelerating ray-object intersection tests can be
classified as a directional technique [Mülle92]. Our contribution was a more effi-
cient algorithm that utilizes uniform spatial subdivision. Law, et al. also described a
similar algorithm for thrashless ray casting on parallel computers [Law96].

1To be precise, tessellated geometry may also be added to/discarded from the cache only in memory.
Consult the paper [Pharr97] for further details.
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The main advantage of our original algorithm is robustness. It never causes a
sudden breakdown that may occur for cache-based algorithms. This is the most im-
portant property of immediate mode rendering algorithms including Z-buffer and
REYES. The disadvantage, on the other hand, is redundant data processing that
cache-based algorithms intrinsically avoid. All data is processed even if it is not
necessary at all, both in [Mülle92, Nakam97]. Another drawback of the algorithm,
which is not directly related to cache-based algorithms, is that the grid resolution is
limited by the size of memory.2

In this paper, we give our refinements for reducing these problems. The refine-
ments are so simple and general that the original algorithm is enhanced smoothly,
and furthermore, total speedup is significant in spite of their simplicity. We achieved
speedups of roughly up to 4x for SPD scenes with up to 50 million objects (6GB),
and up to 14x for pathological cases with 1 billion objects (87GB), all rendered on
a PC with 256MB memory. Similar techniques are found in other non-ray tracing
algorithms, especially enhanced REYES [Apoda00] and several culling algorithms
[Mölle99]. We actually consider this paper as an example that shows how such tech-
niques can be naturally imported into our original algorithm. Introducing these and
other techniques, we realize fast and robustexternalray tracing.

The rest of this paper is organized as follows. Section2 describes the original
algorithm and its drawbacks more specifically. Section3 describes refinements for
them. Section4 shows experimental results and we conclude in Section5.

2 Original Algorithm and Drawbacks

We describe our original algorithm briefly and its drawbacks more specifically here.
Consult the paper [Nakam97] for a full understanding because the actual algorithm
has more complicated details.

The basic idea of breadth-first ray tracing iskeeping rays instead of objects in
memory and processing objects sequentially. In our original algorithm, rays are
stored in voxels of uniform spatial subdivision. For non-uniform environments, the
user may specify multiple groups of objects, each of which corresponds to one grid.
The whole process is outlined as follows:

PreprocessVoxels overlapping each bounding box are marked while reading data
for each grid sequentially.

Intersection Intersection tests are done while reading data for each grid sequen-
tially, and produce intersections for all rays in the current depth, including

2Although we explicitly show differences between two approaches for conciseness, many similar
components are found in both algorithms and perhaps we can make a rendering system that seamlessly
switches or combines them. The key for such hybrid systems is to develop methods for detecting or
precursing thrashings in the cache-based part.
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preprocess()
{

for (each object on disk) {
read an object;
determine voxels overlapping its bounding box;
mark overlapping voxels;

}
}

intersection()
{

while (there are unfinished rays in memory or on disk) {
while (memory is not filled) {

read a ray;
traverse voxels for storing the ray

into several candidate voxels;
if (no candidate voxel for the ray is found)

write the intersection to disk;
}
for (each object on disk) {

read an object;
determine voxels overlapping its bounding box;
for (each overlapping voxel)

for (each ray in the voxel)
do intersection calculation

for updating the intersection of the ray;
}
for (each ray in memory) {

traverse voxels for storing the ray
into several candidate voxels;

if (the intersection of the ray is complete)
write the intersection to disk;

}
}

}

shading()
{

while (there are unprocessed intersections on disk) {
read intersections to fill memory;
sort intersections by object identifier;
for (each object on disk) {

read an object;
do shading calculation and generate next rays;

}
}

}
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Figure 1:Pseudocode of the original algorithm and a graphical example of the inter-
section phase. In the graphical example, ‘several’ in the pseudocode is fixed to ‘one’.
(a) Voxels overlapping each bounding box are marked in the preprocess phase. There
are three rays: r1, r2, and r3. (b) In the intersection phase, rays are stored into first
candidate voxels. The process for r2 is immediately finished because there is no can-
didate voxel on the path. The intersection point of r1 is found, but r1 has not reached
that point (i.e., the intersection is not ‘complete’) and its process is continued. (c)
The process of r1 is finished in the middle of traversing to the next candidate voxel.
r3 is stored into the next candidate voxel and then its intersection is found.
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shadow, reflection, and refraction rays. This procedure results in partial inter-
sections. After all grids are processed, these intersections are merged to get
final intersections.

Shading Local color contributions for the previous depth are determined using the
results for shadow rays, and new rays are calculated with intersection points
for non-shadow rays, again reading the scene data sequentially.

The latter two phases are repeated until either there is no new ray or the maximum
tracing depth is reached.

The procedure for each grid in the intersection phase is most important and com-
plicated. We firstly traverse voxels for storing each ray into voxels. For both limiting
the amount of memory space needed and avoiding redundant intersection tests, we
initially store each ray in only the first few, non-empty ‘candidate’ voxels it pene-
trates from its origin.3 We then read each object and determine which voxels overlap
its bounding box. If any voxel stores rays, we check the intersection between each
of these rays and the object, and update each ray’s intersection. After all objects
are processed, we find the next set of non-empty voxels for each ray and process all
objects again. We repeat this process as needed. Figure1 shows a rough pseudocode
of the whole algorithm and a graphical example of the intersection phase.

This algorithm keeps sequential access for data on disk and never breaks down.
There are however two major drawbacks:

1. Redundant Data Processing:
All objects are processed even if they are not necessary. In the intersection
phase, we store rays only in the partial candidate voxels in each pass and
therefore many voxels are empty. Reading an object overlapping such empty
voxels is wasteful. Both determining which voxels overlap each bounding box
and finding them empty are simple operations, but the total cost becomes high
if there are a large number of objects. Reading all objects is also redundant in
the shading phase where only objects intersected with rays are necessary.

2. Limited Grid Resolution:
The grid resolution is limited by the size of memory. Although the algorithm
works with some limited resolution, its computation time increases linearly for
the number of objects. The computation time increases at a slower rate if the
resolution is increased.

3The ‘candidate’ voxels are those into which rays should be stored. For example, a ray should be stored
where it enters the region of voxels corresponding to a bounding box. Consult the paper [Nakam97] for
further details.
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Figure 2:Data formats on disk. The sketches show only things about geometry and
bounding boxes. (a) Input data is converted into two separated files: for geome-
try and for bounding boxes. The geometry file contains records each of which is
organized with a type identifier and geometry data itself. The bounding boxes file
contains records each of which is organized with an identifier of the corresponding
data – actually, a byte position on file – and bounding box data itself. (b) Bound-
ing boxes are then sequentially merged for creating a bounding box hierarchy. Each
record contains the end position of children.

3 Refinements

There are two major problems described in the previous section: redundant data
processing and limited grid resolution. In the following sections, we first solve the
redundant data processing problem. The solution introduces several modifications,
which are also utilized in solving the limited grid resolution problem.

3.1 Solution for Redundant Data Processing

Separation of Geometry and Bounding Boxes Most operations rarely require
both geometry and its bounding box. The preprocess phase requires only bound-
ing boxes, while the shading phase requires only geometry. The intersection phase
requires both types of data, but geometry is required only if its bounding box is inter-
sected with some ray. We separate bounding boxes from geometry considering these
points. The data formats on disk are shown in Figure2 (a).

Although seeking in the non-separated stream may seem to be enough, it requires
another cost. Each seek operation requires an operating system call taking only a
short time, but millions of calls cannot be neglected. In fact, we have experienced
performance gain in building codes for large data storage by avoiding seek operations
as many as possible.

Lazy Processing We introduce theforward-onlyseek operation and delay process-
ing data as much as possible, instead of always reading and processing them. This is
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a basic lazy evaluation, but was not emphasized in previous papers, though some of
them might support it. It should be emphasized more because it has a great impact
on performance if we process large data.

There are two types of lazy processing: for each object’s geometry and with a
bounding box hierarchy. The following sections describe them.

Lazy Processing for Each Object’s Geometry As we described before, the
intersection phase requires geometry only if the bounding box is intersected with
some ray. The pseudocode of this part is thus modified as follows:

for (each object on disk) {
read the bounding box;
determine voxels overlapping the bounding box;
for (each overlapping voxel)

for (each ray in the voxel)
if (the ray intersects the bounding box) {

if (the geometry has not been read) {
seek in the geometry data stream;
read the geometry;

}
do intersection calculation

for updating the intersection of the ray;
}

}

The shading phase just follows a similar procedure in the inner ‘if ’ clause above.
This makes the shading phase depend mostly on the number of rays, not on the
number of objects.

sort intersections by object identifier;
for (each intersection) {

if (the geometry has not been read)
seek in the geometry data stream;
read the geometry;

}
do shading calculation and generate next rays;

}

Lazy Processing with a Bounding Box Hierarchy Even if bounding boxes
separated from geometry are processed, the cost of processing bounding boxes them-
selves grows in proportion to the number of objects. To reduce this cost, we introduce
a bounding box hierarchy that is created by merging original bounding boxes sequen-
tially. If a parent bounding box can be skipped in some operation, the operation for
all children – including geometry – can be skipped. If it cannot be skipped, the check
for the parent bounding box becomes wasteful. Parent bounding boxes are however
few compared with the whole data, so that their overheads are also small. The new
data formats on disk are shown in Figure2b.

Actual merging for one hierarchy level is the following:

1. The ‘area ratio threshold’T is set to
(
s/N1/3

)2
, wheres is an user-specified

constant, andN is the number of bounding boxes at the current level. If we
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compute the area ratio for a cube whose side iss times as long as a side of a
voxel, it is equal toT.

2. Each bounding box is read and merged with the current accumulated bounding
box if A/Aall ≤ T, whereA is the surface area of the resulting bounding box,
andAall is that of the scene-wide bounding box.

Repeating the above procedure creates a bounding box hierarchy. We also limit the
number of hierarchy levels and the number of top-level bounding boxes as follows:

• If N ≤ n or L ≥ l , we invoke the above procedure once usingt instead ofT
and stop repeating the procedure, wheren, l , andt are user-specified constants,
andL is the next (resulting) level.

The above simple method groups small bounding boxes into clusters, while iso-
lating large bounding boxes. It also automatically create top-level bounding boxes,
which were manually specified in the original algorithm. Although the hierarchy is
not optimal because we simply merge bounding boxes in a sequential order, it is com-
mon that objects in the stream (the output of modeling programs) locally distribute
especially when there are a large number of objects. We keep the algorithm as an
immediate mode one by adopting this method. Note also that this refinement itself
does not forbid reordering objects, though such reordering for large data may require
lengthy time and large temporary space. Some preprocess may reorganize objects to
gain locality and to get a better bounding box hierarchy. For example, organizing ob-
jects as in the cache database described in [Pharr97] and/or utilizingR-tree are good
choices. Major in-memory algorithms may also be utilized by sequentially splitting
objects into several groups each of which fits in memory.

3.2 Solution for Limited Grid Resolution

The efficiency of uniform spatial subdivision depends on the grid resolution. The
total amount of memory for efficient subdivision grows in proportion to the number
of objects – this is a typical space-time tradeoff. If we handle one billion objects, each
axis resolution becomes 1,000 resulting in109 voxels. Non-uniform subdivision may
reduce this problem, however, simple in-memory subdivision is not enough to solve
the problem: how can we handle billions of objects that are uniformly distributed in
space?

We favor uniform spatial subdivision because of its simplicity and efficiency, so
that we first attempted to solve the problem for uniform spatial subdivision. Non-
uniform environments are handled with multiple grids, as in the original algorithm.
Other good solutions may include the use of aggregate objects, though we have not
investigated it yet.
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Figure 3:Partition into subspaces in the preprocess phase. (a) Cubic partition (dis-
played with thick lines) maximizes the possibility of culling non-cubic parent bound-
ing boxes (displayed with thick dotted lines). (b) Layered partition, for example, can
never cull the parent bounding box at the bottom.

In the following sections, we show solutions for the preprocess phase and the
intersection phase, where the intersection phase is further divided into two parts:
traversal and ray-object intersection.

Preprocess In the preprocess phase, we process each subspace one by one instead
of the whole space. For example,1,000×1,000×1,000voxels can be handled as
eight subspaces each of which contains500× 500× 500 voxels. Results are then
merged to get the whole set of voxels.

Although this procedure needs multiple passes for the scene data, we can reduce
the cost of each pass by utilizing a bounding box hierarchy. If the subspace is small,
many bounding boxes do not overlap it; we can skip such bounding boxes at once
if their parent bounding box can be skipped. Note that a parent bounding box may
have an edge almost equals to that of the whole bounding box in length; we partition
space so that each of the subspaces becomes cubic for maximizing the possibility of
culling (see Figure3).

Traversal The original algorithm reads a ray and immediately traverses voxels for
the ray. This is easy to implement, but is not allowed for a high-resolution grid,
because it causes random access to voxels stored on disk. To solve this problem, we
first reduce the number of traversals and thus the amount of disk access by modifying
‘ intersection() ’ in Figure1 as follows, where a ‘pass’ means one cycle of the
main loop:
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Figure 4: Traversal with layered partition. There are five rays (r1–r5). Each ray is
initially stored into the block (displayed with thick lines) corresponding to the current
voxel coordinate. These blocks are then processed one by one in both horizontal
directions. r1 and r3 are processed in the pass from the left to the right, while r2 and
r4 are processed in the pass from the right to the left. r5 may be processed in either
pass.

intersection()
{

// initialization
while (rays are on disk) {

read rays to fill memory;
traverse voxels until each ray’s ‘first candidate voxel’ is found;
if (the first candidate voxel is found)

its voxel coordinate is saved with the ray identifier on disk;
}
// main loop
while (there are unfinished rays in memory or on disk) {

read rays that have the first candidate voxels to fill memory;
traverse voxels to get each ray’s other candidate voxels in this pass

until each ray’s ‘first candidate voxel’ in the next pass is found;
for (each object on disk) {

...
}
for (each ray in memory)

if (the intersection of the ray is complete)
write the intersection to disk;

}
}

Note that the first candidate voxel in the next pass ispreviouslydetermined. We can
determine which ray survives in the next pass without traversing voxels again, so
that the last ‘for ’ loop has no traversal. Although this modification may seem to
be complicated, it is a simple application ofsentinel(the first candidate voxel in the
next pass is the sentinel).

Second, we adopt a method like scanline algorithms for preventing random ac-
cess to voxels on disk; using layered partition, voxels are partitioned into several
blocks each of which fits in memory. We then read voxels in each block and traverse
voxels for each ray in the block. The actual procedure for ‘traverse voxels... ’
in the above pseudocode is the following (see Figure4):
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// initialization
store rays into blocks on x-axis;
// main loop
for (each block in ascending order) {

read voxels for the current block;
for (each ray in the current block) {

traverse voxels;
if (the ray exit the current block)

store the ray into the next block;
}

}
for (each block in descending order) {

do the same procedure in the above ‘for’ loop;
}

The above method needs to access the whole set of voxels only twice at most and
the access can be done in a sequential order. We may partition other axes for further
reducing memory requirement, though it will require more access to disk.

Ray-Object Intersection After the traversal part is finished, how should we hold
voxels for storing rays? An easy solution is a similar one in the previous sections:
holding only partial voxels and processing all objects for these voxels. Repeating this
process produces correct results, however, it increases passes for objects. Preventing
the increase of passes for objects is important, so that we alternatively adopt a two-
level grid. For example,1,000×1,000×1,000voxels are replaced with100×100×
100upper level voxels each of which may store a lower level block containing10×
10×10 voxels. This is similar to the method described by Jevans, et al. [Jevan89],
except we store rays instead of objects.

Holding voxels in two levels, as such, is not enough for reducing memory re-
quirement. Suppose that there are some rays in every upper level voxel. Simply
allocating lower level blocks in this worst case requires a large amount of memory
again. We adopt the following method for solving this problem, because in general
few upper level voxels have many rays (see Figure5):

1. The fixed number of lower level blocks are allocated.

2. Rays that will be stored are counted in each upper level voxel.

3. Lower level blocks are assigned to upper level voxels, in the order of counts:
a voxel with more rays has priority. There may not be enough blocks, because
the number of blocks is limited.

4. Rays are stored. Each ray is stored into voxels in lower level blocks if pos-
sible; otherwise, it is stored into upper level voxels directly, with its voxel
coordinates.

For rays directly stored into upper level voxels, we must check whether the ray actu-
ally belongs to voxels that overlap each bounding box. Storing rays into upper level
voxels thus causes an overhead in general, but it is also better for a small number of
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Figure 5: How to store rays into voxels in two levels. (a) Traversal results. There
are three voxels (small dark ones) in which rays should be stored. (b) Voxels in
two levels. Thick lines show upper level voxels. The lower level voxels (small dark
ones) and the upper level voxel (large dark one) store rays. (c) If a lower level block
is available, lower level voxels in the block hold the ray. (d) If a lower level block
is not available, the upper level voxel holds the ray with the voxel coordinate. The
voxel coordinate is used to determine whether the ray belongs to voxels that overlap
each bounding box.

rays because accessing lower level voxels requires another cost. The above method
reduces memory requirements, limits the amount of memory required in the worst
case, and its speed loss is small.

Although it is difficult to find optimal resolutions for upper/lower level voxels,
we currently adopt the following method and maximize the upper level resolution;
this reduces rays per upper level voxel:

1. The user initializes upper and lower resolutions for an axis –Ru andRl – with
their maximum values.

2. The grid resolution is determined by Klimaszewski’s method [Klima97]. Its
maximum resolution for an axis is defined asR.

3. If R≤ Ru, we employ a single-level grid.

4. If R> Ru, we employ a two-level grid whereRu andRl are modified as follows:
Rl = min(Rl ,ceil(R/Ru)), and thenRu = min(Ru,ceil(R/Rl )).

4 Results

We have run the implementation under Linux on a 450MHz PentiumII PC with
256MB memory. All test data was produced in NFF with the SPD package [Haine87]
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and was converted into binary form. No instancing was used, and other required test-
ing procedures were also followed. In the rest of this section, we show several results
in brief. Consult the JGT web page for more detailed descriptions of experimental
configurations and results.

We firstly tested relatively small data (up to 50 million objects/6GB) for inves-
tigating various tendencies of refinements in Section3.1 – separation of geometry
and bounding boxes(S), lazy processing for each object’s geometry(G), andlazy
processing with a bounding box hierarchy(B). Each grid resolution was determined
by the method described in Section3.2. For all scenes, refinements become more
effective as data grows. For each scene of its largest size factor, the ‘S+G’ results
in speedups as was expected, and its gain factor is 1.38–2.30. On the other hand,
the effectiveness of ‘B’ greatly depends on the depth complexity (how many objects
a ray passes through) and/or the occlusion complexity (how many objects are oc-
cluded) as in other culling techniques. The ‘B’ also has an overhead for creating
and processing a bounding box hierarchy. The ‘S+G+B’ therefore results in various
speedups; the gain factor is 1.39–4.48, and the ‘S+G+B to S+G’ gain factor is 0.99–
2.63. The ‘B’ however does not cause large overheads in worst cases, because there
are only a small number of parent bounding boxes. We also tested two-level grids
for these scenes by limiting the grid resolution explicitly. Although two-level grids
have 10–20% loss, it can be rewarded with the efficiency of high-resolution grids.

We secondly tested refinements for huge data. Table1 summarizes statistics.
These statistics show that applying refinements for huge data further improves ren-
dering (preprocess and tracing) time. The gain factors range from 5 to 14 in render-
ing time. The gain factor in tracing time is quite large – 70.78 – for ‘rings368m’
(‘rings368’ with different view data), because only a small portion of objects con-
tributed to the image and many objects were culled by ‘B’. Note that it is not an
ordinary view-frustum culling; there are reflection/shadow rays going outside the
frustum. Note also that high-resolution grids were used by applying refinements in
Section3.2 even for ‘base’ in order to avoid lengthy computation time. The gain
factors would be much larger if the grid resolution for ‘base’ was limited.

For huge data, creation time is extremely long, and the preprocess phase ac-
counts for a large part of rendering time. This results from strictly following the
testing procedure of SPD. In actual systems, however, it is important to cooperate
with modeling systems for efficient rendering.

5 Conclusions

We have shown several refinements for breadth-first ray tracing utilizing uniform
spatial subdivision. Total speedup is significant. The new algorithm is much faster
than the original one if there are many objects having no contribution to the rendered
image, while it still works nicely in other situations. It also allows the use of high-
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Table 1:Statistics for huge data

statistics of scene data and rendering (preprocess+tracing) time
#objects size (MB) creation base S+G S+G+B

mount14 536,870,916 49,664 19:16:15 19:26:15 2.04 5.33 (2.62)
rings368 1,000,787,041 88,857 26:37:42 50:54:40 1.84 12.43 (6.76)
rings368m 1,000,787,041 88,857 26:37:42 30:40:26 1.65 13.65 (8.26)

preprocess/tracing time
preprocess tracing

base S+G S+G+B base S+G S+G+B
mount14 6:31:37 2.10 8.87 (4.23) 12:54:37 2.01 4.44 (2.21)
rings368 11:03:30 1.82 5.61 (3.09) 39:51:10 1.84 18.76 (10.17)
rings368m 11:03:30 1.82 5.61 (3.09) 19:36:56 1.57 70.78 (45.01)

where ‘nameN’ means the scene ‘name’ of the size factor ‘N’; ‘creation’ shows time for both executing an
SPD command and converting its NFF output into binary form; ‘base’ shows rendering time without refine-
ments (except high-resolution grids); ‘S+G’ and ‘S+G+B’ show gain factors; and the values in parentheses
show the ‘S+G+B to S+G’ gain factors. Time is shown in hours:minutes:seconds. The view parameter is the
only difference between ‘rings368m’ and ‘rings368’: The view frustum of ‘rings368m’ contains approximately
1 million objects.

resolution grids that may not fit in memory, achieving further speedup.
Another good point is that these refinements smoothly enhance the original al-

gorithm and keep the whole algorithm’s generality; the input data, for example, is
still handled as a sequential stream of objects. This enables us to import other refine-
ments easily in the future. For example, reordering objects spatially and combining
other acceleration/cache-based schemes are interesting.

Our rules in refinements are based onN1/3 and we use rough settings for them,
but there should be better rules/settings (see the nice discussion by Havran and Sixta
[Havra99]). It is interesting to investigate such rules/settings for huge data, because
too much analysis of a scene leads to a too lengthy preprocess. It is also valuable
to consider general and portable scene database management systems. If there is a
system providing detailed information of the scene, data conversion and preprocess
can be greatly shortened. Such information can be utilized also in the actual ray
tracing phase.
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