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Breadth-First Ray Tracing Utilizing
Uniform Spatial Subdivision

Koji Nakamaru and Yoshio Ohno, Member, IEEE Computer Society

Abstract —Breadth-first ray tracing is based on the idea of exchanging the roles of rays and objects. For scenes with a large number
of objects, it may be profitable to form a set of rays and compare each object in turn against this set. By doing so, thrashing, due to
disk access, can be minimized. In this paper, we present ways to combine breadth-first methods with traditional efficient algorithms,
along with new schemes to minimize accessing objects stored on disk. Experimental analysis, including comparisons with depth-first
ray tracing, shows that large databases can be handled efficiently with this approach.

Index Terms —Breadth-first ray tracing, uniform spatial subdivision.

——————————   ✦   ——————————

1 INTRODUCTION

AY tracing is known to be a powerful technique, and a
major bottleneck of this technique—its computation

time—has been greatly reduced by previous authors [1].
However, Cook et al. have pointed out one serious prob-
lem with traditional ray tracing [2]: The cost to access the
scene database is not considered. This may cause trouble
with a scene containing a huge amount of data because
accessing it causes thrashing. This problem contrasts
clearly with an advantage of the z-buffer algorithm. In the
z-buffer algorithm, objects are sequentially processed and
can be stored in the secondary memory. Although we
have to maintain the main memory for z-buffer, its size
depends only on the number of pixels on the screen. This
predictable bound of required memory makes the z-buffer
algorithm particularly convenient for hardware imple-
mentation [3].

This problem has not been deeply studied yet for the
following reasons:

• If we do not use many large textures, each object uses
a small amount of memory. One sphere requires only
four floating point numbers, for example.

• The complexity of the scene database can be increased
by hierarchical instancing [4], [5]. This is a powerful
method and is practical to use in a very high quality
rendering system [6]. Other methods based on object
properties also reduce the amount of required mem-
ory [7], [8].

• Simple and effective methods are available for im-
proving the accessing of scene databases, such as
certain caching methods [9], [10], the use of coherent-
space-filling curves [11], etc.

Once we exceed the capacity of virtual memory, however,
ray tracing will be useless. Users may want to render data
that has details of the real world without optimiz-

ing/reducing their scene databases. We want to avoid this
weakness in ray tracing, and provide robustness to users.

The cause of this problem is accessing the scene database
in undetermined order. 0üller et al. proposed a new strat-
egy of ray tracing to avoid the undetermined accessing [12],
[3]. They call this strategy breadth-first ray tracing, a name
derived from the fact that ray trees are traversed in
breadth-first order. That is, first, we determine the nearest
intersection points for all view rays. Then, we treat all
shadow rays and determine shadows. Subsequently, we
treat all rays of reflection and refraction, and so on. We
hold rays, instead of objects, in the main memory and can
access objects sequentially with this strategy. Breadth-first
traverse for ray trees has already been used for some accel-
eration methods [13], [14], for vectorized ray tracing to
maximize the performance of vector processors [15], and
for parallel ray tracing, where each processor’s local mem-
ory is very small [16]. The work of 0üller et al. was, how-
ever, the first use directly intended for handling large scene
databases even on ordinal workstations.

0üller et al. made the ray-z-buffer a concrete algorithm,
utilizing some special acceleration structure for this strat-
egy. Unfortunately, the time behavior of the ray-z-buffer in
a concrete implementation showed poor behavior compared
with that of efficient implementations of depth-first ray
tracing. A distributed version of ray-z-buffer has also been
implemented to cope with this “absolute time” problem [3].

Breadth-first ray tracing is basically slower than depth-
first ray tracing when the scene database is small because of
the overhead for holding rays. We can get, however, a robust
ray tracer by switching the type of ray tracing according to
the size of the scene database (Fig. 1). The capabilities de-
scribed above—the predictable bound of memory or sequen-
tial data accessing—may be important, also, on a machine
with much memory space, because they increase the cache
coherency. Troubles with the design of efficient algorithms
might have been the reason that breadth-first ray tracing did
not receive much attention in the past, in spite of those inter-
esting features. The ray-z-buffer may be improved to some
degree, but its current form is not essential to breadth-first
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ray tracing. The key is to “exchange the roles of rays and the
scene database,” and, then, we can compose efficient algo-
rithms based on today’s major acceleration methods.

The algorithm proposed in this paper utilizes uniform
spatial subdivision [17] and has several improvements to
minimize accessing objects. The whole process is outlined
as follows:

• Preprocess: All scene data are converted into binary
form including bounding boxes. We then scan all data
to prepare the voxel structure.

• Intersection tests: Intersection tests are done reading
the scene data sequentially to produce results for all
rays in the current depth, including shadow, reflec-
tion, and refraction rays.

• Shading: Local color contributions for the previous
depth are determined using the results for shadow
rays, and new rays are calculated with intersection
points for nonshadow rays, again reading the scene
data sequentially.

The latter two steps are repeated either until there is no
new ray or the maximum tracing depth is reached. Note
that the scene data are accessed sequentially in any parts,
thus causing no thrashing.

Concepts of the algorithm may be applied with other ac-
celeration techniques, especially octree spatial subdivision
[18] and adaptive/nested grids [19], [4]. However, construct-
ing efficient nonuniform structures still remains a productive
research area even in ordinal on-memory ray tracing [20] and
is a difficult problem for large databases. We have currently
adopted a very simple solution for a nonuniform environ-
ment. More details and results are shown in later sections.

The rest of paper is organized as follows: Section 2 de-
scribes intersection tests and shading in detail. Section 3
shows several results including comparisons with a depth-
first ray tracer. We conclude and indicate several directions
for future work in Section 4.

2 ALGORITHM

Our algorithm for intersection calculations is a bit compli-
cated. We will describe the basic idea to utilize uniform
spatial subdivision (called USS, below) in Section 2.1. This
algorithm presents two problems, and the solution for the

serious one is shown in Section 2.2. The solution for the other
problem is shown in Section 2.3. Based on this algorithm for a
single grid, Section 2.4 describes solutions for a nonuniform
environment. Section 2.5 describes the shading part, which is
also important when we handle the large scene database.

2.1 Basics
If we exchange the roles of rays and the scene database di-
rectly for USS, we treat the voxels as containing rays in-
stead of objects. We then read each object and determine
which voxels overlap it. If any voxel contains rays, we
check the intersection between each of those rays and the
object, and update each ray’s intersection information. The
pseudocode is shown in Pseudocode 1.

main()

{

Object o;

Ray r;

initialize voxels;

while (there are unprocessed rays on the disk) {

// storing rays into voxels

read rays until main memory is full;

for (each r in the main memory) {

initialize 3DDDA of r;

traverse voxels and store &r in each voxel;

}

// reading objects and checking intersections

for (each o on the disk) {

read o;

determine which voxels overlap o;

for (each voxel overlaps o)

for (each r in this voxel)

if (r.mailbox != o.id) {

check the intersection between r

and o;

update r.intersection_information;

r.mailbox = o.id;

}

}

// writing intersection information

for (each r in the main memory)

write r.intersection_information to the

disk;

}

}

Pseudocode 1

r.mailbox corresponds to the mailbox [21] in USS, except
it stores the object number. This algorithm will work, but
there are some problems, one being that we cannot perform
intersection tests in the order of objects along each ray. In
normal USS, on the other hand, we can perform intersection
tests by starting from objects nearest to the ray’s origin and
terminating processing when the ray enters a voxel which is
beyond the current closest intersection point. Another prob-
lem is that the algorithm consumes much memory space be-
cause of the pointers from voxels to each ray. This is a more
serious problem because necessary memory space increases
in proportion to the resolution of voxels.

Fig. 1. Robust and efficient ray tracer: It selects each algorithm ac-
cording to the size of the scene database.
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Obviously, we do not need to store rays in voxels that no
object overlaps. Voxels in which rays are stored are reduced
by previously checking which voxels overlap any object.
This is not enough, though (consider the situation in which
all voxels are filled with some objects). To limit the amount
of memory space needed, we initially store each ray in only
the first few, nonempty voxels it penetrates from its origin,
and process all objects as before. Then, we find the next set
of nonempty voxels for each ray and process these, repeat-
ing this process as needed.

Another modification to the algorithm is replacing
voxel/object overlap testing with voxel/axis-aligned
bounding box overlap testing. Instead of determining pre-
cisely each time whether a voxel overlaps an object, as in

Pseudocode 1, we substitute testing voxels which simply
overlap the object’s bounding box. This simplifies ob-
ject/voxel testing at the cost of a bit of unnecessary ray-object
intersection tests. However, object/voxel testing is crucial for
handling large databases, and, later, we will use the fact that
each volume composed with these voxels is convex to avoid
many other unnecessary tests in Section 2.3. We also point
out that the bounding box for each object can be stored as six
floating point values, thus minimizing disk storage and
making the scene database independent of voxel resolutions,
and that Craig Kolb’s RayShade ray tracing package success-
fully uses this definition of voxels for each object.

The new pseudocode is shown in Pseudocode 2 (see also
Fig. 2).

     
                                                                (a)                                                                                                (b)

     
                                                                (c)                                                                                                (d)

Fig. 2. Demonstration of Pseudocode 2, where “several” in Pseudocode 2 means “two.” (a) The initial state where voxels corresponding to each
object are marked. (b) The process for r2 is finished, and r1 and r3 are stored in each of the first two voxels. The intersection point of r1 is found,
but r1 has not been reached at that point, and the process of r1 is continued. (c) r1 and r3 are stored in each of the second two voxels, and the
process for r1 is finished. (d) r3 is stored in the third two voxels, and the process for r3 is finished.
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main()

{

Object o;

Ray r;

initialize voxels;

// checking whether voxels overlap axis-

// aligned bounding boxes

for (each o on the disk) {

read o;

determine which voxels overlap the axis-

aligned bounding box of o;

for (each voxel overlaps the axis-aligned

bounding box of o)

mark the flag in the voxel;

}

while (there are unprocessed rays on the

disk) {

// preprocessing rays

read rays until main memory is full;

for (each r in the main memory)

initialize 3DDDA of r;

while (there is r whose intersec-

tion_information is not complete) {

// storing rays into partial voxels

for (each r in the main memory)

if (r.intersection_information is not

complete) {

traverse voxels and store &r into

several voxels whose flags are

marked;

}

// reading objects and checking inter-

// sections

for (each o on the disk) {

read o;

determine which voxels overlap the

axis-aligned bounding box of o;

for (each voxel overlaps the axis-

aligned bounding box of o)

for (each r in this voxel)

if (r.mailbox != o.id) {

check the intersection between

r and o;

update r.intersection_information;

r.mailbox = o.id;

}

}

}

// writing intersection information

for (each r in the main memory)

write r.intersection_information to the

disk;

}

}

Pseudocode 2

r.intersection_information is complete if

1) r.intersection_information has the intersection
point in voxels already traversed or

2) r goes outside the whole bounding box of the scene.

Pseudocode 2 shows an algorithm that can select objects along
each ray beginning from its origin and can fix the amount of
main memory space. The scene database is, however, repeat-
edly accessed until all r.intersection_information are
complete. This may cause trouble for the large scene data-
bases that we want to handle, and solving this problem is a
key point in making this algorithm practicable. We show
the solution in Section 2.2.

There is another problem that is not easily clarified—
redundant intersection tests. This is caused by both the al-
gorithm shown in Pseudocode 2 and the solution shown in
Section 2.2. We describe this problem specifically and show
the solution in Section 2.3.

We here define three terms for convenience of explana-
tion. The “pass” means the body of the inner “while” loop
in Pseudocode 2. The “store number” indicates the number
of voxels in which each ray is stored in each pass. This
number controls the amount of required memory for stor-
ing rays as described above. The “voxel boundary” indi-
cates the boundary of the volume which consists of voxels
overlapping the axis-aligned bounding box of the object.

2.2 Reducing the Number of Accesses to the Scene
Database

Assuming that the store number is a fixed number, how
many passes are needed? We experimentally found that
the number of rays which do not receive complete inter-
section information is reduced exponentially. Fig. 3a
shows an example for default “rings” [22], where the store
number is always one. Note that the higher grid resolution
also increases the number of passes. When we render a
small scene database, it is not necessary to pay attention to
many passes, because the cost of accessing the scene data-
base is very small. When we render a large scene database,
however, we cannot ignore the cost. To reduce the num-
ber of passes, we increase the store number with the fol-
lowing methods:

• Using the memory space of the “finished” rays for the
remaining rays that do not get complete intersection
information. For example, if the store number is 1 at
the start, we increase this number to 2 when the re-
maining rays decrease by half. This method can keep
down the exponential reduction.

• Increasing the store number in proportion to the grid
resolution res. For example, if we set the store number
at one when the res is 20, we will set it at five when
the res is 100. While this method increases the neces-
sary memory space with O(res), it is not a serious
problem because the coefficient of the increase is
small. This method can keep the number of passes
constant when the grid resolution is increased.

Fig. 3b shows the effects of above methods, where the
initial store number is one for the 20 � 20 � 20 grid and two
for the 40 ��40 ��40 grid.
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The key point is making each ray go through voxels as
fast as possible. There is another problem that slows down
rays. Suppose that the store number is always one, as in
Fig. 4a. Three passes are necessary for the ray to go through
voxels that overlap both the ray and the object. Note that
each object has to be checked only in the first voxel where
the ray “enters” voxels for that object. We use the following
method to reduce this redundancy:

1) In addition to the flag that shows the object occupa-
tion, we define six flags that show which faces of each
voxel are included in any object’s voxel boundary.
These flags are marked in the initial bounding
box/voxel overlap testing.

2) Then, as each ray is moved through the voxel struc-
ture, the ray has to be stored only if the voxel has any
objects overlapping it and
• either the ray passes through a voxel boundary

facing the ray, flagged as used by one or more ob-
jects (Fig. 4b),

• or the ray originates in the voxel and crosses any
voxel boundary (Fig. 4c).

Note that the last case must be handled because the ray
never enters those voxels.

2.3 Reducing Redundant Intersection Tests
Redundant intersection tests are initiated for two reasons.
One is the partial traversal method shown in Pseudocode 2.
The ray in Fig. 5a has to be checked for object 1 in each
pass, even if we use the mailbox, because the mailbox can-
not work across each pass. Other objects beside object 1
overwrite the mailbox of the ray in Fig. 5a, for example.

Remember that we have defined voxels for each object as
those overlapping the axis-aligned bounding box of the
object. The volume consisting of those voxels is convex,
and, so, each ray goes through this volume only once. We
utilize this property to solve the problem as follows:

• Holding the last (farthest from the ray origin) voxel
position where each ray was stored in the previous

pass. If the voxel at this position is one of voxels for
some object, we do not need to invoke the real inter-
section test between the ray and the object because it
was done in previous passes (Fig. 5b).

Another reason for redundant tests is the increase of
the store number mentioned in Section 2.2. If the store
number is more than one, we have cases where we test
rays against objects in some voxels which may get ob-
scured by successful ray-object intersections in voxels
closer to the ray’s origin. Redundant tests caused by the
second method in Section 2.2 are necessary for keeping
the number of passes constant. Those caused by the first
method are also unavoidable if there is no unprocessed
ray on the disk and we want to reduce the number of
passes. Suppose, however, that there are many rays that
we cannot hold in the main memory at once. Pseudocode 2
shows an easy scheme in which rays are divided into sev-
eral sets, and each set is processed one by one, causing
redundant tests due to the first method. We can reduce
these tests by the following method:

• At the end of each pass, writing the intersection in-
formation for finished rays, reading unprocessed rays
on the disk into the memory space of finished rays,
and initializing their 3DDDAs (Fig. 5c). The store
number is determined from the number of rays re-
maining in the main memory, with methods de-
scribed in Section 2.2.

When the main memory is filled up with rays, the store
number is kept as small as possible and we can reduce re-
dundant intersection tests. The drawback of this method is
that it is necessary to sort intersection information because
the order of writing is different from reading the rays. The
sorting is, however, much easier compared to other main
operations, such as intersection calculations, shading cal-
culations, etc.

The final pseudocode for intersection calculations is
shown in Pseudocode 3.

     
                                                           (a)                                                                                                                   (b)

Fig. 3. Remaining rays in each pass. The initial number of rays is 65,536. (a) The store number is fixed at one. (b) The store number is adaptively
increased.



NAKAMARU AND OHNO:  BREADTH-FIRST RAY TRACING UTILIZING UNIFORM SPATIAL SUBDIVISION 321

2.4 Solutions for Nonuniform Environments
We have described the algorithm for intersection tests which
utilizes a single grid. This can work efficiently for a uniform
environment, but not for a nonuniform environment. As
mentioned before, this may be solved with some nonuniform
structures, though constructing efficient nonuniform struc-
tures for large databases is a difficult problem. For this rea-
son, we have adopted the following simple solution:

1) Objects are grouped into several sets each of which is
associated with a single grid.

2) Then, intersections for each grid are calculated as be-
fore, and the results for all grids are merged.

This solution is very easy and works fine if there are not
very many grids. We show several results in Section 3.

Another solution which has not been tested yet utilizes
aggregate objects [5]. The whole scene is handled as one

          
(a)

     
(b)

(c)

Fig. 4. Reducing voxels where each ray is stored. (a) Three registrations (and passes) are necessary to go through the marked voxels. (b) Left:
only one registration is needed for the previous situation. Right: an example of more general registrations. (c) Storing the ray before it crosses any
object’s voxel boundary so as not to miss the intersection test for the object.
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grid, but primitives located roughly at the same position
are associated with an aggregate object, the acceleration
structure which is handled as one object. We can solve the
problem and also combine other acceleration/modeling
techniques with the current algorithm in this way, though
this method needs more space for keeping at least one ag-
gregate object in the main memory.

2.5 Shading
Shading is invoked after intersection tests for one tracing
depth are completed. As we are already familiar with the
ray-filling method described in Section 2.3, it seems possible
and efficient to calculate new rays whenever an intersection
is found, and add these rays into a queue in the main mem-

ory. In fact, this is possible if the database access in shading is
not bottlenecked. However, shading needs the calculation of
a normal vector at the intersection point, which, in turn,
needs to access geometry data and might also need to calcu-
late the local coordinate and to access large texture data.
These data should be accessed sequentially, as well.

Concerning these points, we separate shading from in-
tersection tests and delay calculations of normal vectors,
etc., until shading. Intersection tests produce intersection
information for each ray which is expressed with three
components: the ray number, the object number, and the
distance from the ray origin to the intersection point. The
question is how to access three kinds of data: rays, the scene
database, and intersection information.

      
(a)

      
(b)

     
(c)

Fig. 5. Reducing redundant intersection tests. (a) The dark gray voxel shows the current position of the ray. The intersection test for object 1 must
be repeated. (b) The voxel filled with slant lines shows the last voxel where the ray was stored in the previous pass. The intersection test for ob-
ject 1 can be avoided in the middle and right pictures. (c) Left: Intersection information of finished rays is written to the disk. Right: Then, unproc-
essed rays on the disk are read and stored in the main memory that finished rays occupied in the previous pass.
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main()

{

Object o;

Ray r;

initialize voxels;

// checking whether voxels overlap axis-aligned bounding boxes and

// whether faces of each voxel are included in any object�s voxel

// boundary.

for (each o on the disk) {

read o;

determine which voxels overlap the axis-aligned bounding box of o;

for (each voxel overlaps the axis-aligned bounding box of o) {

mark the flag in the voxel;

if (some faces of the voxel are included in the voxel boundary)

mark the corresponding flags in the voxel;

}

}

// initialize rays in the main memory and the store number

read rays until main memory is full;

for (each r in the main memory)

initialize 3DDDA of r;

determine the store number from the number of rays in the main memory;

while (there is r whose intersection_information is not complete) {

// storing rays into partial voxels

for (each r in the main memory)

if (r.intersection_information is not complete) {

traverse voxels and store &r into the store number of voxels

where r enters those of some objects;

}

// reading objects and checking intersections

for (each o on the disk) {

read o;

determine which voxels overlap the axis-aligned bounding box of o;

for (each voxel overlaps the axis-aligned bounding box of o)

for (each r in this voxel)

if (r.mailbox != o.id

  && r.last_voxel is out of voxels for o) {

  check the intersection between r and o;

  update r.intersection_information;

  r.mailbox = o.id;

}

}

// writing complete intersection information, preprocessing new rays,

// and determining the store number

for (each r in the main memory)

if (r.intersection_information is complete) {

write r.intersection_information to the disk;

if (there are unprocessed rays on the disk) {

read one unprocessed ray on the disk and store it into r;

initialize 3DDDA of r;

}

}

determine the store number from the number of rays in the main memory;

}

}

Pseudocode 3
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While the structure of objects differs from one another,
the structure of each ray or the intersection information is a
single structure. We adopt the method shown in Pseudo-
code 4 in consideration of both this fact and the handling of
very large scene databases.

main()

{

Object o;

Ray r;

while (there are unprocessed rays on the

disk) {

read rays until main memory is full;

read intersection information correspond-

ing to rays in the main memory;

sorting rays and intersection information

by the object numbers;

rewind the file pointer for objects;

for (each r in the main memory) {

while (o.id < r.intersection_information.

object_id)

read o;

do shading calculations;

write color contributions and next gen-

eration rays to the disk;

}

}

}

Pseudocode 4

In short, we

1) divide rays and intersection information into several
sets, and

2) join each set to objects.

Note that the line “write color contributions...”
generates incompletely ordered elements and we have to
sort them, though this is also an easy operation.

3 RESULTS

We show several results in this section. Our implementa-
tion consists of small programs which are integrated by one
shell script “sray.” Each program is written in C, running
under Linux on a Pentium PC with 32 MB memory. The
screen resolution is 512 � 512 and the number of view rays
is 263,169 (513 � 513, see README in SPD package).

We made comparisons between sray and RayShade to
obtain accurate absolute time and to make any extra costs
clear. RayShade is a well-known fast ray tracer that is based
on USS and implements other nice techniques. In order to
get the same conditions, sray’s primitive intersection testers
are based on those of RayShade, and RayShade is adjusted
to trace the same rays of sray using command-line options
and applying some patches. In the following statistics,
“rayshade-ss” denotes RayShade, which uses the same view
rays and the same shading model, while “rayshade-ss-r”
denotes “rayshade-ss,” which cannot use shadow caching
[23] and the ray box cull in each voxel [4]. “rayshade-ss” is
almost equivalent to RayShade on the “depth 0” condition,

where only view rays and first shadow rays are traced.
Most of scenes are entirely enclosed with one grid, where
each axis’s resolution is defined as ÍN1/3 + 0.5Ý, where N is
the number of objects. The grid for balls/trees encloses all
objects except the basement plane.

Table 1 shows statistics for the default scenes of the SPD
package. The store number is always one in order to make
the number of intersection tests the same. In terms of total
time, sray time is three to five times longer than rayshade-ss
time, and two to three times longer than rayshade-ss-r time.
We can describe the reasons for slower results as follows:

• Preprocess: The contents of preprocesses differ from
each other in two ray tracers. The main reason for
longer time is, however, just writing onto the disk.

• Intersection tests: Our implementation aims to hold
as many rays as possible in order to handle large
scene databases efficiently, and has no ray box cull.
This is one of the reasons for slower results in inter-
section tests. Shadow caching also makes another dif-
ference. In the part for rayshade-ss-r, however, each
sray time is still 1.2 to 1.8 times longer.1 The extra
costs of sray are:

• Accessing rays stored in each voxel and related
intersection information.

• The last voxel checking described in Section 2.3.

1. The faster results for “gears4” and “tetra6” are due to many thin
bounding boxes, which our implementation skips and RayShade does not.
The range described here is adjusted with profiling data.

TABLE 1
STATISTICS FOR SMALL DATABASES

time (sec) ratio
rss rss-r sray rss-

r/rss
sray
/rss

sray/
rss-r

  total
balls4 137.59 214.94 710.01 1.56 5.16 3.30
gears4 289.18 545.32 1045.31 1.89 3.61 1.92
mount6 171.05 223.81 816.13 1.31 4.77 3.65
rings7 361.80 607.32 1204.18 1.68 3.33 1.98
tetra6 44.88 71.23 111.04 1.59 2.47 1.56
tree11 102.42 143.20 480.11 1.40 4.69 3.35

preprocess
balls4 2.31 2.36 3.12 1.00 1.35 1.35
gears4 9.02 9.28 15.18 1.00 1.68 1.68
mount6 4.78 4.90 7.51 1.00 1.57 1.57
rings7 4.95 4.99 5.63 1.00 1.14 1.14
tetra6 2.35 2.36 3.68 1.00 1.57 1.57
tree11 3.78 3.73 5.48 1.00 1.47 1.47

intersection tests
balls4 81.14 163.52 303.40 2.02 3.74 1.86
gears4 201.72 444.37 563.35 2.20 2.79 1.27
mount6 94.43 159.35 280.44 1.69 2.97 1.76
rings7 213.74 490.66 763.91 2.30 3.57 1.56
tetra6 24.89 55.61 52.66 2.23 2.12 0.95
tree11 63.15 108.36 202.92 1.72 3.21 1.87

shading
balls4 54.14 49.06 403.49 0.91 7.45 8.22
gears4 78.44 91.67 466.78 1.17 5.95 5.09
mount6 71.84 59.56 528.18 0.83 7.35 8.87
rings7 143.11 111.67 434.64 0.78 3.04 3.89
tetra6 17.64 13.26 54.70 0.75 3.10 4.13
tree11 35.49 31.11 271.71 0.88 7.66 8.73

“rss” means rayshade-ss, and “rss-r” means rayshade-ss-r. RayShade time for
intersection tests is estimated with profiling data, while that of shading is
defined as (total �  preprocess �  intersection tests).
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• Filling up rays described in Section 2.3.

Accessing rays is important because the amount of rays
is much larger than that of objects in default SPD scenes.

• Shading: sray is three to nine times slower than Ray-
Shade. This is caused by the sorting of rays and other
data, described in Section 2, and by the file I/O. Note
that the costs of these operations depend not on the
size of the scene database but on the number of rays.

Fig. 6 to Fig. 8 show changes in time when the number of
objects increases, and Table 2 shows the size of memory
allocated by rayshade-ss for each scene. For sray, the store
number is defined as Íres/10 + 0.5Ý initially, and its maxi-
mum value is defined as res, where res is the grid resolution
defined as before for both ray tracers. These graphs basi-
cally show expected results: rayshade-ss is faster where
there is sufficient available memory and sray becomes faster
where rayshade-ss thrashes. rayshade-ss time grows more
rapidly once the swap space starts to be used. rayshade-ss is,

however, also faster in tracing (total � preprocess) time for sev-
eral scenes even if it is slower in the preprocess step. These
interesting behaviors depend on the nature of each scene:

• balls/tree: There are many tiny objects concentrating
at small space. These objects have to be accessed as a
ray enters such space and cause many memory faults.

• gears: There are many obscured and never accessed ob-
jects. This makes the working set small and makes the
program work even for the relatively large database.

• mount/tetra: There is no concentration of objects, like
balls/tree, but many objects finally cause memory faults.
We think that mount will cause results similar to those
of tetra, though we have not made an experiment for the
next size factor because it exceeds the swap space.

• rings: Each object decreases its size slowly as the size
factor increases and occupies more voxels than other
scenes. This causes the very lengthy preprocess time
even for 32 MB database. The tracing time, on the other
hand, shows the behavior similar to that for gears.

    
                                                       (a)                                                                                                                  (b)

Fig. 6. Changes in time for the size of the scene database. The size of the scene database is actually that of memory allocated by rayshade-ss.
The label with prefix “p/ ” means preprocess time. The label with prefix “t/ “ means tracing (total � preprocess) time. The label with no prefix
means total time. Scenes are (a) “balls” and (b) “gears.”

     
                                                           (a)                                                                                                                  (b)

Fig. 7. Changes in time for the size of the scene database. Scenes are (a) “mount” and (b) “rings.”
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The next one is an interesting demonstration. Because
the access to objects is totally sequential, we can easily han-
dle them as compressed data. Fig. 9 shows the comparison
between the change in time for data compressed with gzip
and that for normal data. The costs to expand data grow in
proportion to the data size, but we can handle the data even
over the disk size.2 Figs. 10, 11, and 12 show examples ren-
dered from compressed scene databases and Table 3 shows
statistics for these pictures.

TABLE 2
TOTAL MEMORY ALLOCATED FOR RAYSHADE-SS

size factor number of objects allocated
memory (MB)

balls 4 7,382 1.3
5 66,431 10.9
6 597,872 97.2

gears 4 9,345 5.5
5 18,251 9.8
6 31,537 16.3
7 50,079 25.2
8 74,753 37.1
9 106,435 52.4

10 146,001 71.4
11 194,327 94.8

mount 6 8,196 5.2
7 32,772 13.0
8 131,076 44.1

rings 7 8,401 2.6
10 23,101 6.9
13 49,141 14.7
16 89,761 27.0
17 107,101 32.0

tetra 6 4,096 1.5
7 16,384 5.3
8 65,536 21.1
9 262,144 86.2

tree 11 8,191 2.1
12 16,383 4.1
13 32,767 8.2
14 65,535 16.3
15 131,071 32.4
16 262,143 64.7

2. We use one 700 MB disk to store the scene database.

Fig. 9. Comparison between the change for gzip’ed data and that for
normal data. The target scene is “tetra.”

Fig. 10. “mount” (compiled with -DNEW_HASH) of the size factor 11.

     
                                                          (a)                                                                                                                   (b)

Fig. 8. Changes in time for the size of the scene database. Scenes are (a) “tetra” and (b) “tree.”
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4 CONCLUSION

This paper has introduced an efficient algorithm for
breadth-first ray tracing. This algorithm inherits features of
USS and can efficiently handle very large scene databases,
which may be compressed data. We can get a robust and
efficient ray tracer by using both depth-first ray tracing,
utilizing major acceleration methods, and breadth-first ray
tracing, utilizing our algorithm.

We emphasize the point that we can combine breadth-
first ray tracing with today’s major acceleration methods.
Combining breadth-first ray tracing with other acceleration
methods is an interesting area of research. The determina-
tion of parameters for acceleration structures and the con-
struction of nonuniform structures which target large data-
bases, should also be investigated in the future.

Other interesting issues include the following: Many
caching algorithms for parallel ray tracing are available,
but it is not clear whether those are also effective on a sin-
gle processor. Actually, caching algorithms targeting very
large databases have not yet been studied in detail. It is
important to make good caching algorithms for delaying
the breakdown, because breadth-first ray tracing has the
basic overhead for holding rays. Once we get some good
caching algorithms and those properties, it will also be-
come easy to determine the switching point between
depth-first and breadth-first ray tracing.

It is also interesting to implement breadth-first ray
tracing on a machine with much memory space. The
overhead for holding rays is especially large on a machine
such as the one we used. On a machine with much mem-
ory space, we can reduce this overhead, and, then, the
capabilities that increase the cache coherency—the se-
quential data accessing and the compressed data han-
dling—become effective. Each object can be an aggregate
object on such a machine, and we can combine breadth-
first ray tracing with normal acceleration/modeling
methods.
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